42 resultados para Immunohistochemistry

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catechol-O-methyltransferase (COMT) metabolizes catecholamines such as dopamine (DA), noradrenaline (NA) and adrenaline, which are vital neurotransmitters and hormones that play important roles in the regulation of physiological processes. COMT enzyme has a functional Val158Met polymorphism in humans, which affects the subjects COMT activity. Increasing evidence suggests that this functional polymorphism may play a role in the etiology of various diseases from schizophrenia to cancers. The aim of this project was to provide novel biochemical information on the physiological and especially pathophysiological roles of COMT enzyme as well as the effects of COMT inhibition in the brain and in the cardiovascular and renal system. To assess the roles of COMT and COMT inhibition in pathophysiology, we used four different study designs. The possible beneficial effects of COMT inhibition were studied in double-transgenic rats (dTGRs) harbouring human angiotensinogen and renin genes. Due to angiotensin II (Ang II) overexpression, these animals exhibit severe hypetension, cardiovascular and renal end-organ damage and mortality of approximately 25-40% at the age of 7-weeks. The dTGRs and their Sprague-Dawley controls tissue samples were assessed with light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and high-pressure liquid chromatography (HPLC) to evaluate the tissue damages and the possible protective effects pharmacological intervention with COMT inhibitors. In a second study, the consequence of genetic and pharmacological COMT blockade in blood pressure regulation during normal and high-sodium was elucidated using COMT-deficient mice. The blood pressure and the heart rate were measured using direct radiotelemetric blood pressure surveillance. In a third study, the effects of acute and subchronic COMT inhibition during combined levodopa (L-DOPA) + dopa decarboxylase inhibitor treatment in homocysteine formation was evaluated. Finally, we assessed the COMT enzyme expression, activity and cellular localization in the CNS during inflammation-induced neurodegeneration using Western blotting, HPLC and various enzymatic assays. The effects of pharmacological COMT inhibition on neurodegeneration were also studied. The COMT inhibitor entacapone protected against the Ang II-induced perivascular inflammation, renal damage and cardiovascular mortality in dTGRs. COMT inhibitors reduced the albuminuria by 85% and prevented the cardiovascular mortality completely. Entacapone treatment was shown to ameliorate oxidative stress and inflammation. Furthermore, we established that the genetic and pharmacological COMT enzyme blockade protects against the blood pressure-elevating effects of high sodium intake in mice. These effects were mediated via enhanced renal dopaminergic tone and suggest an important role of COMT enzyme, especially in salt-sensitive hypertension. Entacapone also ameliorated the L-DOPA-induced hyperhomocysteinemia in rats. This is important, since decreased homocysteine levels may decrease the risk of cardiovascular diseases in Parkinson´s disease (PD) patients using L-DOPA. The Lipopolysaccharide (LPS)-induced inflammation and subsequent delayed dopaminergic neurodegeneration were accompanied by up-regulation of COMT expression and activity in microglial cells as well as in perivascular cells. Interestingly, similar perivascular up-regulation of COMT expression in inflamed renal tissue was previously noted in dTGRs. These results suggest that inflammation reactions may up-regulate COMT expression. Furthermore, this increased glial and perivascular COMT activity in the central nervous system (CNS) may decrease the bioavailability of L-DOPA and be related to the motor fluctuation noted during L-DOPA therapy in PD patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In epithelial-mesenchymal transition (EMT), epithelial cells acquire traits typical for mesenchymal cells, dissociate their cell-cell junctions and gain the ability to migrate. EMT is essential during embryogenesis, but may also mediate cancer progression. Basement membranes are sheets of extracellular matrix that support epithelial cells. They have a major role in maintaining the epithelial phenotype and, in cancer, preventing cell migration, invasion and metastasis. Laminins are the main components of basement membranes and may actively contribute to malignancy. We first evaluated the differences between cell lines obtained from oral squamous cell carcinoma and its recurrence. As the results indicated a change from epithelial to fibroblastoid morphology, E-cadherin to N-cadherin switch, and change in expression of cytokeratins to vimentin intermediate filaments, we concluded that these cells had undergone EMT. We further induced EMT in primary tumour cells to gain knowledge of the effects of transcription factor Snail in this cell model. The E-cadherin repressors responsible for the EMT in these cells were ZEB-1, ZEB-2 and Snail, and ectopic expression of Snail was able to augment the levels of ZEB-1 and ZEB-2. We produced and characterized two monoclonal antibodies that specifically recognized Snail in cell lines and patient samples. By immunohistochemistry, Snail protein was found in mesenchymal tissues during mouse embryonal development, in fibroblastoid cells of healing skin wounds and in fibromatosis and sarcoma specimens. Furthermore, Snail localized to the stroma and borders of tumour cell islands in colon adenocarcinoma, and in laryngeal and cervical squamous cell carcinomas. Immunofluorescence labellings, immunoprecipitations and Northern and Western blots showed that EMT induced a progressive downregulation of laminin-332 and laminin-511 and, on the other hand, an induction of mesenchymal laminin-411. Chromatin immunoprecipitation revealed that Snail could directly bind upstream to the transcription start sites of both laminin α5 and α4 chain genes, thus regulating their expression. The levels of integrin α6β4, a receptor for laminin-332, as well as the hemidesmosomal complex proteins HD1/plectin and BP180 were downregulated in EMT-experienced cells. The expression of Lutheran glycoprotein, a specific receptor for laminin-511, was diminished, whereas the levels of integrins α6β1 and α1β1 and integrin-linked kinase were increased. In quantitative cell adhesion assays, the cells adhered potently to laminin-511 and fibronectin, but only marginally to laminin-411. Western blots and immunoprecipitations indicated that laminin-411 bound to fibronectin and could compromise cell adhesion to fibronectin in a dose-dependent manner. EMT induced a highly migratory and invasive tendency in oral squamous carcinoma cells. Actin-based adhesion and invasion structures, podosomes and invadopodia, were detected in the basal cell membranes of primary tumour and spontaneously transformed cancer cells, respectively. Immunofluorescence labellings showed marked differences in their morphology, as podosomes organized a ring structure with HD1/plectin, αII-spectrin, talin, focal adhesion kinase and pacsin 2 around the core filled with actin, cortactin, vinculin and filamin A. Invadopodia had no division between ring and core and failed to organize the ring proteins, but instead assembled tail-like, narrow actin cables that showed a talin-tensin switch. Time-lapse live-cell imaging indicated that both podosomes and invadopodia were long-lived entities, but the tails of invadopodia vigorously propelled in the cytoplasm and were occasionally released from the cell membrane. Invadopodia could also be externalized outside the cytoplasm, where they still retained the ability to degrade matrix. In 3D confocal imaging combined with in situ gelatin zymography, the podosomes of primary tumour cells were large, cylindrical structures that increased in time, whereas the invadopodia in EMT-driven cells were smaller, but more numerous and degraded the underlying matrix in significantly larger amounts. Fluorescence recovery after photobleaching revealed that the substructures of podosomes were replenished more rapidly with new molecules than those of invadopodia. Overall, our results indicate that EMT has a major effect on the transcription and synthesis of both intra- and extracellular proteins, including laminins and their receptors, and on the structure and dynamics of oral squamous carcinoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basement membranes are specialized sheets of extracellular matrix found in contact with epithelia, endothelia, and certain isolated cells. They support tissue architecture and regulate cell behaviour. Laminins are among the main constituents of basement membranes. Due to differences between laminin isoforms, laminins confer structural and functional diversity to basement membranes. The first aim of this study was to gain insights into the potential functions of the then least characterized laminins, alpha4 chain laminins, by evaluating their distribution in human tissues. We thus created a monoclonal antibody specific for laminin alpha4 chain. By immunohistochemistry, alpha4 chain laminins were primarily localized to basement membranes of blood vessel endothelia, skeletal, heart, and smooth muscle cells, nerves, and adipocytes. In addition, alpha4 chain laminins were found in the region of certain epithelial basement membranes in the epidermis, salivary gland, pancreas, esophagus, stomach, intestine, and kidney. Because of the consistent presence of alpha4 chain laminins in endothelial basement membranes of blood vessels, we evaluated the potential roles of endothelial laminins in blood vessels, lymphatic vessels, and carcinomas. Human endothelial cells produced alpha4 and alpha5 chain laminins. In quantitative and morphological adhesion assays, human endothelial cells barely adhered to alpha4 chain-containing laminin-411. The weak interaction of endothelial cells with laminin-411 appeared to be mediated by alpha6beta1 integrin. The alpha5 chain-containing laminin-511 promoted endothelial cell adhesion better than laminin-411, but it did not promote the formation of cell-extracellular matrix adhesion complexes. The adhesion of endothelial cells to laminin-511 appeared to be mediated by Lutheran glycoprotein together with beta1 and alphavbeta3 integrins. The results suggest that these laminins may induce a migratory phenotype in endothelial cells. In lymphatic capillaries, endothelial basement membranes showed immunoreactivity for laminin alpha4, beta1, beta2, and gamma1 chains, type IV and XVIII collagens, and nidogen-1. Considering the assumed inability of alpha4 chain laminins to polymerize and to promote basement membrane assembly, the findings may in part explain the incomplete basement membrane formation in these vessels. Lymphatic capillaries of ovarian carcinomas showed immunoreactivity also for laminin alpha5 chain and its receptor Lutheran glycoprotein, emphasizing a difference between normal and ovarian carcinoma lymphatic capillaries. In renal cell carcinomas, immunoreactivity for laminin alpha4 chain was found in stroma and basement membranes of blood vessels. In most tumours, immunoreactivity for laminin alpha4 chain was also observed in the basement membrane region of tumour cell islets. Renal carcinoma cells produced alpha4 chain laminins. Laminin-411 did not promote adhesion of renal carcinoma cells, but inhibited their adhesion to fibronectin. Renal carcinoma cells migrated more on laminin-411 than on fibronectin. The results suggest that alpha4 chain laminins have a counteradhesive function, and may thus have a role in detachment and invasion of renal carcinoma cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dioxins are ubiquitous environmental poisons having unequivocal adverse health effects on various species. The majority of their effects are thought to be mediated by the aryl hydrocarbon receptor (AhR). Developing human teeth may be sensitive to dioxins and the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to rodent teeth. Mechanisms of TCDD toxicity can be studied only experimentally. The aim of the present thesis work was to delineate morphological end points of developmental toxicity of TCDD in rat and mouse teeth and salivary glands in vivo and in vitro and to characterize their cellular and molecular background. Mouse embryonic teeth and submandibular gland explants were grown in organ culture without/with TCDD at various concentrations, examined stereomicroscopically and processed for histological examination. The effects of TCDD on cellular mechanisms essential for organogenesis were investigated. The expression of various genes eliciting the response to TCDD exposure or involved in tooth and salivary gland development was studied at the mRNA and/or protein levels by in situ hybridization and immunohistochemistry. Association of the dental effects of TCDD with the resistance of a rat strain to TCDD acute lethality was analyzed in two lactationally exposed rat strains. The effect of TCDD on rat molar tooth mineralization was studied in tissue sections. TCDD dose- and developmental stage-dependently interfered with tooth formation. TCDD prevented early mouse molar tooth morphogenesis and altered cuspal morphology by enhancing programmend cell death, or apoptosis, in dental epithelial cells programmed to undergo apotosis. Cell proliferation was not affected. TCDD impaired mineralization of rat molar dental matrices, possibly by specifically reducing the expression of the mineralization-related dentin sialophosphoprotein gene shown in cultured mouse teeth. The impaired mineralization of rat teeth was accompanied by decreased expression of AhR and the TCDD-inducible xenobiotic-metabolozing enzyme P4501 A1 (CYP1A1), suggesting mediation of the TCDD effect by the AhR pathway. The severe interference by TCDD with rat incisor formation was independent of the genotypic variation of AhR determining the resistance of a rat strain to TCDD acute lethality. The impairment by TCDD of mouse submandibular gland branching morphogenesis was associated with CYP1A1 induction and involved blockage of EGF receptor signalling. In conclusion, TCDD exposure is likely to have activated the AhR pathway in target organs with the consequent activation of other signalling pathways involving developmentally regulated genes. The resultant phenotype is organ specific and modified by epithelial-mesenchymal interactions and dependent on dose as well as the stage of organogenesis at the time of TCDD exposure. Teeth appear to be responsive to TCDD exposure throughout their development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human herpesvirus 6 (HHV-6) was identified from patients with HIV and lymphoproliferative diseases in 1986. It is a β-herpesvirus and is divided into two subgroups, variants A and B. HHV-6 variant B is the cause of exanthema subitum, while variant A has not yet definitely proven to cause any disease. HHV-6, especially variant A, is a highly neurotropic virus and has been associated with many diseases of the central nervous system (CNS) such as encephalitis and multiple sclerosis (MS). The present studies were aimed to elucidate the role of HHV-6 and its two variants in neurological infections. Special attention was given to study the possible role of HHV-6 in the pathogenesis of MS. We studied the expression of HHV-6 antigens using immunohistochemistry in brain autopsy samples from patients with MS and controls. HHV-6 antigen was identified in 70% of MS specimens whereas 30% of control specimens expressed HHV-6 antigen. Serum and cerebrospinal fluid (CSF) samples were collected from patients with MS and patients with other neurological diseases (OND) from patients visiting Helsinki University Central Hospital Neurological Outpatient Clinic during the years 2003 and 2004. In addition, we studied 53 children with suspected encephalitis. We developed an immunofluorescence IgG-avidity assay for the detection of primary HHV-6A and HHV-6B infection. For HHV-6B antibodies, no differences were observed between patients with MS and OND. For HHV-6A both seroprevalence and mean titers were significantly higher in MS compared to OND. HHV-6A low-avidity IgG antibodies, suggestive of primary infection, were found in serum of two, three and one patient with definite MS, possible MS and OND, respectively. From pediatric patients with suspected encephalitis, six serum samples (11.3%) contained low-avidity antibodies, indicating a temporal association between HHV-6A infection and onset of encephalitis. Three out of 26 patients with CDMS and four out of 19 patients with CPMS had HHV-6 antibodies in their CSF compared to none of the patients with OND (p=0.06 and p=0.01, respectively). Two patients with CDMS and three patients with CPMS appeared to have specific intrathecal synthesis of HHV-6A antibodies. In addition, oligoclonal bands (OCB) were observed in the CSF of five out of nine MS patients tested, and in two the OCBs reacted specifically with HHV-6 antigen, which is a novel finding. These results indicate HHV-6 specific antibody production in the CNS and suggest that there is a subset of MS patients with an active or chronic HHV-6A infection in the CNS that might be involved in the pathogenesis of MS. Our studies suggest that HHV-6 is an important causative or associated virus in some neurological infections, such as encephalitis and it might contribute to the development of MS, at least in some cases. In conclusion, HHV-6 is a neurotropic virus that should be taken into consideration when studying acute and chronic CNS diseases of unknown origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The von Hippel-lindau (VHL) disease is a dominantly inherited neoplastic disorder which predisposes patients to multiple tumours including capillary haemangioblastomas (CHBs), pheochromocytomas (PCCs), renal cell carcinomas (RCCs). CHBs are the most common manifestations of VHL disease, occurring sporadically or as a manifestation of VHL disease. Inactivation of the VHL gene at 3p25-26 is believed to cause both familial and sporadic VHL-associated tumours and germ-line mutation of the VHL gene have been detected in 100% of the CHBs studied. However, a limited number of sporadic CHBs, PCCs display VHL inactivation. Other molecular alterations involved in tumourigenesis of sporadic CHBs, PCCs remain largely unknown. The purpose of the present work was to search for genetic alterations, or other mechanisms of inactivation, in addition to the VHL gene, that may be important in the development of VHL-associated tumours. Though less satisfactory than cure, prevention and early detection are the most promising and feasible means reducing cancer morbidity and mortality. This work is based on the view that increasing knowledge about the molecular events underlying tumour development will eventually aid in early detection and lead to improved treatment. We evaluated a large set of VHL-associated patients, searched for a clinical and radiologic signs of the disease. We succesfully performed a germ-line mutation analysis and characterised three patient groups, VHL, suspect VHL and sporadic, a germ-line mutation analysis revealed a 50% mutation rate only in the VHL groups, no sporadic or suspect cases displayed any mutation. We also utilized comparative genomic hybridization (CGH) to screen for DNA copy number changes in both sporadic and VHL-associated CHB. Our analysis revealed (27%) DNA copy number losses. The most common finding was loss of chromosomal arm 6q, seen in (23%) cases, No differences were noted between VHL-associated and sporadic tumours. Furthermore a loss of heterozygosity (LOH) study on chromosome 3p and 6q was done with the purpose to determine allele losses not observable by CGH, and to uncover the location of putative tumour suppressor genes important in CHB and PCC tumourigenesis. We identified loss of chromosome 6q and a minimal deleted area at 6q23-24 in CHBs. We also showed LOH at 6q23-24 in PCCs and identified the ZAC1 (6q24-25) as a candidate gene, ZAC1 is a maternally imprinted tumour suppressor gene with anti proliferative properties. To study further the role of ZAC inactivation in CHBs, we investigated LOH, promoter hypermethylation and expression status of the ZAC1 gene in mainly sporadic CHBs. Our LOH analysis revealed that the majority of the tumours with allele loss. The gene promoter methylation analysis similarly detected predominance of the methylated ZAC sequence in almost all tumours. Immunohistochemistry exhibited a strongly reduced expression of ZAC in stromal cells of all CHBs studied. Our current results indicate that the absence of the unmethylated, ZAC1 promoter sequence was highly concurrent with LOH for the ZAC1 region or 6q loss. This observation together with lack of ZAC expression, points to preferential loss of the non imprinted, expressed ZAC allele in CHB, in summary, our series of studies reveal a new chromosomal region 6q, emphasizes the importance of ZAC1 gene in the development of CHB and PCC, particularly in non-VHL associated cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori infection is a risk factor for gastric cancer, which is a major health issue worldwide. Gastric cancer has a poor prognosis due to the unnoticeable progression of the disease and surgery is the only available treatment in gastric cancer. Therefore, gastric cancer patients would greatly benefit from identifying biomarker genes that would improve diagnostic and prognostic prediction and provide targets for molecular therapies. DNA copy number amplifications are the hallmarks of cancers in various anatomical locations. Mechanisms of amplification predict that DNA double-strand breaks occur at the margins of the amplified region. The first objective of this thesis was to identify the genes that were differentially expressed in H. pylori infection as well as the transcription factors and signal transduction pathways that were associated with the gene expression changes. The second objective was to identify putative biomarker genes in gastric cancer with correlated expression and copy number, and the last objective was to characterize cancers based on DNA copy number amplifications. DNA microarrays, an in vitro model and real-time polymerase chain reaction were used to measure gene expression changes in H. pylori infected AGS cells. In order to identify the transcription factors and signal transduction pathways that were activated after H. pylori infection, gene expression profiling data from the H. pylori experiments and a bioinformatics approach accompanied by experimental validation were used. Genome-wide expression and copy number microarray analysis of clinical gastric cancer samples and immunohistochemistry on tissue microarray were used to identify putative gastric cancer genes. Data mining and machine learning techniques were applied to study amplifications in a cross-section of cancers. FOS and various stress response genes were regulated by H. pylori infection. H. pylori regulated genes were enriched in the chromosomal regions that are frequently changed in gastric cancer, suggesting that molecular pathways of gastric cancer and premalignant H. pylori infection that induces gastritis are interconnected. 16 transcription factors were identified as being associated with H. pylori infection induced changes in gene expression. NF-κB transcription factor and p50 and p65 subunits were verified using elecrophoretic mobility shift assays. ERBB2 and other genes located in 17q12- q21 were found to be up-regulated in association with copy number amplification in gastric cancer. Cancers with similar cell type and origin clustered together based on the genomic localization of the amplifications. Cancer genes and large genes were co-localized with amplified regions and fragile sites, telomeres, centromeres and light chromosome bands were enriched at the amplification boundaries. H. pylori activated transcription factors and signal transduction pathways function in cellular mechanisms that might be capable of promoting carcinogenesis of the stomach. Intestinal and diffuse type gastric cancers showed distinct molecular genetic profiles. Integration of gene expression and copy number microarray data allowed the identification of genes that might be involved in gastric carcinogenesis and have clinical relevance. Gene amplifications were demonstrated to be non-random genomic instabilities. Cell lineage, properties of precursor stem cells, tissue microenvironment and genomic map localization of specific oncogenes define the site specificity of DNA amplifications, whereas labile genomic features define the structures of amplicons. These conclusions suggest that the definition of genomic changes in cancer is based on the interplay between the cancer cell and the tumor microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Puumala virus (PUUV) is the causative agent of nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome. Finland has the highest documented incidence of NE with around 1000 cases diagnosed annually. PUUV is also found in other Scandinavian countries, Central Europe and the European part of Russia. PUUV belongs to the genus Hantavirus in the family Bunyaviridae. Hantaviruses are rodent-borne viruses each carried by a specific host that is persistently and asymptomatically infected by the virus. PUUV is carried by the bank voles (Myodes glareolus, previously known as Clethrionomys glareolus). Hantaviruses have co-evolved with their carrier rodents for millions of years and these host animals are the evolutionary scene of hantaviruses. In this study, PUUV sequences were recovered from bank voles captured in Denmark and Russian Karelia to study the evolution of PUUV in Scandinavia. Phylogenetic analysis of these strains showed a geographical clustering of genetic variants following the presumable migration pattern of bank voles during the recolonization of Scandinavia after the last ice age approximately 10 000 years ago. The currently known PUUV genome sequences were subjected to in-depth phylogenetic analyses and the results showed that genetic drift seems to be the major mechanism of PUUV evolution. In general, PUUV seems to evolve quite slowly following a molecular clock. We also found evidence for recombination in the evolution of some genetic lineages of PUUV. Viral microevolution was studied in controlled virus transmission in colonized bank voles and changes in quasispecies dynamics were recorded as the virus was transmitted from one animal to another. We witnessed PUUV evolution in vivo, as one synonymous mutation became repeatedly fixed in the viral genome during the experiment. The detailed knowledge on the PUUV diversity was used to establish new sensitive and specific detection methods for this virus. Direct viral invasion of the hypophysis was demonstrated for the first time in a lethal case of NE. PUUV detection was done by immunohistochemistry, in situ hybridization and RT-nested-PCR of the autopsy tissue samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of genes predisposing to tumor syndromes has raised general awareness of tumorigenesis. Genetic testing of tumor susceptibility genes aids the recognition of individuals at increased risk of tumors. Identification of novel predisposing genes enables further studies concerning the classification of potential associated tumors and the definition of target patient group. Pituitary adenomas are common, benign neoplasms accounting for approximately 15% of all intracranial tumors. Accurate incidence estimation is challenging since a great portion of these adenomas are small and asymptomatic. Clinically relevant adenomas, that cause symptoms due to the expansion of the cell mass or the over-secretion of normally produced hormones, occur in approximately one of 1 000 individuals. Although the majority of pituitary adenomas are sporadic, a minority occur as components of familial syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 syndrome is caused by germ-line mutations in the MEN1 gene, whereas most of the CNC patients carry the mutated protein kinase A (PKA) regulatory subunit-1-α (PRKAR1A) gene. Recently, other conditions predisposing to endocrine tumors have been identified: Pituitary Adenoma Predisposition (PAP) and MEN type 4 (MEN4). PAP was originally identified in a genetically homogeneous Finnish population. In a population based cohort from Northern Finland, aryl hydrocarbon receptor-interacting protein (AIP) gene mutations were found in 16% of all patients diagnosed with growth hormone (GH) producing pituitary adenoma, and in 40% of the subset of patients who were diagnosed under the age of 35 years. Since AIP mutations were originally described in a defined, homogeneous population from Northern Finland, it was relevant to study whether mutations also occur in more heterogeneous populations. In patient cohorts with different ethnic origins and variable clinical phenotypes, germ-line AIP mutations were detectable at low frequencies (range 0.8-7.4%). AIP mutation-positive patients were often diagnosed with a GH-producing adenoma at a young age, and usually had no family history of endocrine tumors. The low frequency of AIP mutations in randomly selected patients, and the lack of any family history of pituitary adenomas create a challenge for the identification of PAP patients. Our preliminary study suggests that AIP immunohistochemistry may serve as a pre-screening tool to distinguish between the AIP mutation-negative and the mutation-positive tumors. Tumors of various endocrine glands are components of MEN1 and CNC syndromes. Somatic MEN1 and PRKAR1A mutations in sporadic pituitary adenomas are rare, but occur in some of the other tumors related to these syndromes. The role of AIP mutations in endocrine neoplasia was studied and our results indicated that somatic AIP mutations are rare or non-existent in sporadic tumors of endocrine glands (0 of 111). Furthermore, germ-line AIP mutations in prolactin producing adenomas (2 of 9) confirmed the role of this pituitary tumor type in the PAP phenotype. Thyroid disorders are common in the general population, and the majority of them are sporadic. Interestingly, it has been suggested that thyroid disorders might be more common in PAP families. For this reason we studied germ-line AIP mutations in 93 index cases from familial non-medullary thyroid cancer (NMTC) families. The underlying gene or genes for familial NMTC have not been identified yet. None of the patients had any potentially pathogenic AIP mutation. This suggests that AIP is unlikely to play a role in familial NMTCs. A novel multiple endocrine syndrome was originally described in rats with phenotypic features of human MEN type 1 and 2. Germ-line mutations of cyclin-dependent kinase inhibitor 1B (CDKN1B also known as p27Kip1) gene were reported later in these rats and a germ-line mutation was also identified in one human family with MEN1-like phenotype (later named MEN4). To confirm the importance of this gene’s mutations in humans, we performed a mutation screening in MEN-like patients and in patients with pituitary adenoma. Our results indicate that CDKN1B/p27Kip1 mutations appear in a small portion of MEN1-like patients (one of 36), and that such mutations are rare or non-existent in both familial (0 of 19) and sporadic pituitary adenoma patients (0 of 50). In conclusion, this work strengthens the tumor susceptibility role of AIP and CDKN1B/p27Kip1 in endocrine neoplasia. Clarifying the PAP phenotype facilitates the identification of potential AIP mutation carriers. Genetic counseling can be offered to the relatives and follow-up of the mutation carriers can be organized, hence an earlier diagnosis is feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastric cancer is the fourth most common cancer and the second most common cause of cancer-related death worldwide. Due to lack of early symptoms, gastric cancer is characterized by late stage diagnosis and unsatisfactory options for curative treatment. Several genomic alterations have been identified in gastric cancer, but the major factors contributing to initiation and progression of gastric cancer remain poorly known. Gene copy number alterations play a key role in the development of gastric cancer, and a change in gene copy number is one of the fundamental mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. This thesis aims at clarifying the complex genomic alterations of gastric cancer to identify novel molecular biomarkers for diagnostic purposes as well as for targeted treatment. To highlight genes of potential biological and clinical relevance, we carried out a systematic microarray-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines. Results were validated using immunohistochemistry, real-time qRT-PCR, and affinity capture-based transcript (TRAC) assay. Altogether 192 clinical gastric tissue samples and 7 gastric cancer cell lines were included in this study. Multiple chromosomal regions with recurrent copy number alterations were detected. The most frequent chromosomal alterations included gains at 7q, 8q, 17q, 19q, and 20q and losses at 9p, 18q, and 21q. Distinctive patterns of copy number alterations were detected for different histological subtypes (intestinal and diffuse) and for cancers located in different parts of the stomach. The impact of copy number alterations on gene expression was significant, as 6-10% of genes located in the regions of gains and losses also showed concomitant alterations in their expression. By combining the information from the DNA- and RNA-level analyses many novel gastric cancer-related genes, such as ALPK2, ENAH, HHIPL2, and OSMR, were identified. Independent genome-wide gene expression analysis of Finnish and Japanese gastric tumors revealed an additional set of genes that was differentially expressed in cancerous gastric tissues compared with normal tissue. Overexpression of one of these genes, CXCL1, was associated with an improved survival of gastric cancer. Thus, using an integrative microarray analysis, several novel genes were identified that may be critically important for gastric carcinogenesis. Further studies of these genes may lead to novel biomarkers for gastric cancer diagnosis and targeted therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotid artery disease is the most prevalent etiologic precursor of ischemic stroke, which is a major health hazard and the second most common cause of death in the world. If a patient presents with a symptomatic high-grade (>70%) stenosis in the internal carotid artery, the treatment of choice is carotid endarterectomy. However, the natural course of radiologically equivalent carotid lesions may be clinically quite diverse, and the reason for that is unknown. It would be of utmost importance to develop molecular markers that predict the symptomatic phenotype of an atherosclerotic carotid plaque (CP) and help to differentiate vulnerable lesions from stable ones. The aim of this study was to investigate the morphologic and molecular factors that associate with stroke-prone CPs. In addition to immunohistochemistry, DNA microarrays were utilized to identify molecular markers that would differentiate between symptomatic and asymptomatic CPs. Endothelial adhesion molecule expression (ICAM-1, VCAM-1, P-selectin, and E-selectin) did not differ between symptomatic and asymptomatic patients. Denudation of endothelial cells was associated with symptom-generating carotid lesions, but in studies on the mechanism of decay of endothelial cells, markers of apoptosis (TUNEL, activated caspase 3) were found to be decreased in the endothelium of symptomatic lesions. Furthermore, markers of endothelial apoptosis were directly associated with those of cell proliferation (Ki-67) in all plaques. FasL expression was significantly increased on the endothelium of symptomatic CPs. DNA microarray analysis revealed prominent induction of specific genes in symptomatic CPs, including those subserving iron and heme metabolism, namely HO-1, and hemoglobin scavenger receptor CD163. HO-1 and CD163 proteins were also increased in symptomatic CPs and associated with intraplaque iron deposits, which, however, did not correlate with symptom status itself. ADRP, the gene for adipophilin, was also overexpressed in symptomatic CPs. Adipophilin expression was markedly increased in ulcerated CPs and colocalized with extravasated red blood cells and cholesterol crystals. Taken together, the phenotypic characteristics and the numerous possible molecular mediators of the destabilization of carotid plaques provide potential platforms for future research. The denudation of the endothelial lining observed in symptomatic CPs may lead to direct thromboembolism and maintain harmful oxidative and inflammatory processes, predispose to plaque microhemorrhages, and contribute to lipid accumulation into the plaque, thereby making it vulnerable to rupture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esophageal atresia (EA), a common congenital anomaly comprising interrupted esophagus with or without a tracheoesophageal fistula (TEF), affects one in 2840 newborns. Over half have associated anomalies. After EA repair in infancy, gastroesophageal reflux (GER) and esophageal dysmotility and respiratory problems are common. As there exist no previous population-based long-term follow-up-studies on EA, its long-term sequelae are unclear. The aims of this study were to assess the cancer incidence (I), esophageal morbidity and function (II), respiratory morbidity (III), and the spinal defects (IV) in adults with repaired EA. All patients treated for EA at the Hospital for Children and Adolescents, University of Helsinki, from 1947 to 1985 were identified, and those alive with their native esophagus were contacted, and the first hundred who replied made up the study group. The patients were interviewed, they filled in symptom questionnaires, and they underwent esophageal endoscopy and manometry, pulmonary function tests, and a full orthopedic evaluation was performed with radiographs of the spine. The questionnaire was also sent by mail to adults with repaired EA not attending the clinical study, and to 287 general population-derived controls matched for age, gender, and municipality of residence. Incidence of cancer among the study population was evaluated from the population-based countrywide cancer registry. 169 (72%) adults with repaired EA replied; 101 (42%) (58 male) participated in the clinical studies at a median age of 36 years (range, 22-56). Symptomatic GER occurred in 34% and dysphagia in 85% of the patients and in 8% and 2% of the controls (P<0.001 for both). The main endoscopic findings included hiatal hernia (28%), Barrett´s esophagus (11%), esophagitis (8%), and stenotic anastomosis (8%). Histology revealed esophagitis in 25 individuals, and epithelial metaplasia in another 21. At immunohistochemistry, CDX2-positive columnar epithelial metaplasia was present in all 21 individuals, and 6 of these also demonstrated goblet cells and MUC2 positivity. In all histological groups, GER and dysphagia were equally common (P=ns). Esophageal manometry demonstrated non-propagating peristalsis in most of the patients, and low ineffective pressure of the distal esophageal body in all. The changes were significantly worse in those with epithelial metaplasia (P≤0.022). Anastomotic complications (OR 8.6-24, 95%CI 1.7-260, P=0.011-0.008), age (OR 20, 95%CI 1.3-310, P=0.034), low distal esophageal body pressure (OR 2.6, 95%CI 0.7-10, P=0.002), and defective esophageal peristalsis (OR 2.2, 95%CI 0.4-11, P=0.014) all predicted development of epithelial metaplasia. Despite the high incidence of esophageal metaplasia, none of the EA patients had suffered esophageal cancer, according to the Finnish Cancer Registry. Although three had had cancer (SIR, 1.0; 95% CI, 0.20-2.8). The overall cancer incidence among adults with repaired EA did not differ from that of the general Finnish population. Current respiratory symptoms occurred in 11% of the patients and 2% of the controls (P<0.001). Of the patients, 16%, and 6% of the controls had doctor-diagnosed asthma (P<0.001). A total of 56% and 70% of the patients and 20% and 50% of the controls had a history of pneumonia and of bronchitis (P<0.001 for both). Respiratory-related impaired quality of life was observable in 11% of the patients in contrast to 6% of the controls (P<0.001). PFT revealed obstruction in 21 of the patients, restriction in 21, and both in 36. A total of 41 had bronchial hyper-responsiveness (BHR) in HCT, and 15 others had an asthma-like response. Thoracotomy-induced rib fusion (OR 3.4, 95%CI 1.3-8.7, P=0.01) and GER-associated epithelial metaplasia in adulthood (OR 3.0, 95%CI 1.0-8.9, P=0.05) were the most significant risk factors for restrictive ventilatory defect. Vertebral anomalies were evident in 45 patients, predominating in the cervical spine in 38. The most significant risk factor for the occurrence of vertebral anomalies was any additional anomaly (OR 27, 95%C I8-100). Scoliosis (over 10 degrees) was observable in 56 patients, over 20 degrees in 11, and over 45 degrees in one. In the EA patients, risk for scoliosis over 10 degrees was 13-fold (OR 13, 95%CI 8.3-21) and over 20 degrees, 38-fold (OR 38, 95%CI 14-106) when compared to that of the general population. Thoracotomy-induced rib fusion (OR 3.6, 95%CI 0.7-19) and other associated anomalies (OR 2.1, 95%CI 0.9-2.9) were the strongest predictive factors for scoliosis. Significant esophageal morbidity associated with EA extends into adulthood. No association existed between the esophageal symptoms and histological findings. Surgical complications, increasing age, and impaired esophageal motility predicted development of epithelial metaplasia after repair of EA. According to our data, the risk for esophageal cancer is less than 500-fold that of the general population. However, the overall cancer incidence among adults with repaired EA did not differ from that of the general population. Adults with repaired EA have had significantly more respiratory symptoms and infections, as well as more asthma, and allergies than does the general population. Thoracotomy-induced rib fusion and GER-associated columnar epithelial metaplasia were the most significant risk factors for the restrictive ventilatory defect that occurred in over half the patients. Over half the patients with repaired EA are likely to develop scoliosis. Risk for scoliosis is 13-fold after repair of EA in relation to that of the general population. Nearly half the patients had vertebral anomalies. Most of these deformities were diagnosed neither in infancy nor during growth. The natural history of spinal deformities seems, however, rather benign, with spinal surgery rarely indicated.